

www.astesj.com 252

Frameworks for Performing on Cloud Automated Software Testing Using Swarm Intelligence
Algorithm: Brief Survey

Mohammad Hossain*, Sameer Abufardeh, Sumeet Kumar

Department of Math Science and Technology, University of Minnesota Crookston, Crookston, MN 56716, USA.

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 March, 2018
Accepted: 16 March, 2018
Online: 11 April, 2018

 This paper surveys on Cloud Based Automated Testing Software that is able to perform
Black-box testing, White-box testing, as well as Unit and Integration Testing as a whole. In
this paper, we discuss few of the available automated software testing frameworks on the
cloud. These frameworks are found to be more efficient and cost effective because they
execute test suites over a distributed cloud infrastructure. One of the framework
effectiveness was attributed to having a module that accepts manual test cases from users
and it prioritize them accordingly. Software testing, in general, accounts for as much as
50% of the total efforts of the software development project. To lessen the efforts, one the
frameworks discussed in this paper used swarm intelligence algorithms. It uses the Ant
Colony Algorithm for complete path coverage to minimize time and the Bee Colony
Optimization (BCO) for regression testing to ensure backward compatibility.

Keywords:
Swarm Intelligence
Ant Colony Algorithm
Bee Colony Optimization
Cloud Based Testing
Test Case Prioritization

1. Introduction

With the increase of code complexity in modern software,
chances of errors are exponentially increasing. These errors can
cause loss of money and innocent human lives [1]. For example,
in April 24 1994, a China airline airbus A-300 crashed, due to a
software bug, resulting the death of 264 innocent lives [2, 3].
Another famous incident was reported in April 1999, where a small
software bug in a military satellite was behind a $1.2 billion loss:
one of the costliest unmanned accidents in the history of Cape
Canaveral launches [4, 5].

Therefore, to reduce the risks of errors, researchers have
developed a variety of testing techniques to find and fix software
bug early and before the deployment of the software. One of the
most critical tests is unit testing, where each module of program is
tested separately. Another critical test is integration testing that
occurs after unit testing, where individual software modules are
combined and tested as a group. Since unit testing requires access
to the system code, it is done during the initial stages of a program,
detecting an estimated 65% of the errors [6, 7, 8]. Other types of
tests includes, system testing and acceptance testing. In system
testing, the system is tested as a whole to verify that it meets the
specified requirements. After that, acceptance testing is done to
verify that, the system meets the client/user requirements.

Testing is generally a lengthy and costly process. Therefore,
automated software testing generally intended to reduce the time
and the cost of testing. It also can increase the depth and scope of
tests to help improve software quality. However, most automated
testing tools fails to provide efficient results, because they only
focus on specific testing techniques [9, 10] and in sometimes they
may be unsuitable for large-scale software.

This survey paper focuses on testing based on Cloud platforms
tools in order to develop cost effective, efficient and time saving
tools that follows the rules of research based techniques to produce
software free of or with few errors or bugs.

2. Testing

Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product or
service under test. Software testing can also provide an objective,
independent view of the software to allow the business to identify
and understand the risks of software implementation. Testing
techniques include, but are not limited to, the process of
executing a program or application with the intent of finding
software bugs (errors or other defects). It is the process of
validating and verifying a software program, application or
product [11]. Software testing is a huge domain, but it can be
broadly categorized into two areas: manual testing and automated
testing:

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Mohammad Hossain, Crookston, MN 56716, 218-281-
8222, Email: hossain@crk.umn.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 252-256 (2018)

www.astesj.com

Special Issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030229

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030229

M. Hossain et al / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 252-256 (2018)

www.astesj.com 253

2.1. Manual Testing

An individual or a group of individuals performing all of the
software quality assurance testing, checking for errors and defects,
is knows as manual testing.

2.2. Automated Testing

The main purpose of this testing is to replace manual testing
with automated cloud based testing without loss of efficiency, in
such a way that it can not only save time but also produce high
quality software.

3. Terminologies and Abbreviations

The following abbreviations and terminologies were used in
this research paper.

3.1. Regression Testing

Software undergoes constant changes. Such changes are
necessitated because of defects to be fixed, enhancements to be
made to existing functionality, or new functionality to be added.
Anytime such changes are made, it is important to ensure that, first
changes or additions work as designed. Second changes or
additions are something that is already working and should
continue to work. Regression testing is carried out to ensure that
any new feature introduced to the existing product does not
adversely affect the current [11].

3.2. Traceability

Traceability is defined as the ability to describe and follow the
life of a requirement, in both forward and backward direction,
throughout the software life cycle. Traceability relations can assist
with several activities of the software development process such as
evolution of software systems, compliance verification of code,
reuse of parts of the system, requirement validation, understanding
of the rationale for certain design decisions, identification of
common aspects of the system, and system change and impact
[12,13].

3.3. White-Box Testing (WBT)

White-Box Testing, also known as clear box testing, gives
verification engineers full access to the source code and the
internal structure of the software. It is the detailed investigation of
internal logic and structure of the code [14]. In WBT, it is
necessary for a tester to have full knowledge of source code. Some
important types of WBT techniques includes Statement Coverage
(SC), where tester tests every single line of code, and Condition
Coverage (CC) in which all the conditions of the code are checked
by providing true and false values to the conditional statements in
the code.

3.4. Black-Box Testing (BBT)

BBT treats the software as a “Black Box” without any
knowledge of internal working of the system and it only examines
the fundamental aspects of the system. In BBT the tester has
knowledge of the system architecture but he/she does not have
access to the source code [15].

4. Swarm Intelligence Algorithms to Optimize Regression
Testing.

Regression Testing ensures that any changes or enhancement
made to the system will not adversely affect the functionality of
software. The execution of all test cases can be an costly and time
consuming process. With this in hand, prioritization of test cases
can help in reduction in cost of regression testing. Swarm
intelligence is an emerging area in the field of optimization and
researchers have developed various algorithms by modeling the
behaviors of different swarm of animals and insects such as ants,
termites, bees, birds, fishes [16]. These algorithms are being used
to reduce the time and cost of testing in general and more
specifically regression testing [11, 17]. Two such widely used
algorithms are Ant Colony Algorithm and Bee Colony
Optimization.

4.1. Ant Colony Algorithm (ACA)

Ant colony algorithms are based on the behavior of a colony
of ants when looking for food. In their search they mark the trails
they are using by laying a substance called pheromone. The
amount of pheromone in a path tells other ants if it is a promising
path or not. This observation inspired Colorni, Dorigo and
Maniezo [18] for proposing a metaheuristics technique: ants are
procedures that build solutions to an optimization problem. Based
on how the solution space is being explored, some values are
recorded in a similar way as pheromone acts, and objective values
of solutions are associated with food sources. An important aspect
of this algorithm is parallelism: several solutions are built at the
same time and they interchange information during the procedure
and use information of previous iterations [19]. In [20] Li and
Lam proposed to use UML State chart diagrams and ACA for test
data generation. The advantages of their proposed approach are
that this approach directly uses the standard UML artifacts created
in software design processes and it also automatically generated
feasible test sequence, non-redundant, and it achieves the stated
coverage criteria.

4.2. Bee Colony Optimization (BCO)

Bee swarm behavior in nature is characterized by autonomy
and distributed functioning, and it is self-organizing. Recently,
researchers started studying the behavior of social insects in an
attempt to use the Swarm Intelligence concept in order to develop
various Artificial Systems [21]. In software engineering, BCO can
be used as a method of regression testing and traceability. Its
purpose is to verify that the current version of the software is
compatible with pervious test results and the data is comparable
to previous versions of the software.

Karnavel and Santhoshkumar proposed a fault coverage
regression system exploiting the BCO algorithm discussed in
[11]. The idea is based on the natural bee colony with two types
of worker bees that are responsible for the development and
maintenance of the colony: scout bees and forager bee. The BCO
algorithm developed for the fault coverage regression test suite is
based on the behavior of these two bees. The algorithm has been
formulated for fault coverage to attain maximum fault coverage

http://www.astesj.com/

M. Hossain et al / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 252-256 (2018)

www.astesj.com 254

in minimal units of execution time of each test case. Two
examples were used whose results are comparable to the optimal
solution [22, 23]. The system was divided into the following
components: Testing Phase, Traceability Phase, Exploration
Test, Generating Reports, and Storing in Database (figure 1):

5. Cloud Testing Framework Example

Large software requires a huge number of test cases. Often,
these test cases require a lot of time and effort even with
automated testing [24, 25, 26]. Because each test consumes
execution time, the execution time required generally decreases
when parallelization is used. Cloud Testing Frameworks
presented in [24, 26] improves the execution process time by
performing the parallel execution of test cases using current
computational resources without source code modification [24, 26,
27].

Using a distributed and parallelized test can result in significant
reduction of time required for test cases execution. It can also
reduce the needed to identify and correct faults. Hence, reducing
the total cost of development. Furthermore, the proposed
framework in [24] increases the reliability of the test results by
using heterogeneous environment that can result in the exposure
of hidden failures ahead of the production phase [24].

One of the earliest Cloud Testing Framework “CouldTesting”
presented by Oliveira and Duarte in 2013 is shown in figure 2. The
framework distributes the unit tests using reflection on the local
classes and then schedules the machine on cloud. It then the load
is distributed over machines, using the round robin scheduling
algorithm to ensure even distribution of the requests to the
available machines in the test infrastructure [24].

Figure 2: Cloud testing components from [24]

 Figure 2 presents the architectural components of the
framework. The main components of the framework are:
Configuration, Reflection, Distribution, Connection, Log and
Main.

The configuration component help in defining information for
paths, hosts, and for load balancing [24]. This component deals
with issues related to local storage space allocation for test results,
selecting the libraries needed for proper test execution, and file
access permission. It includes the list of machines and the
parameters for the load balancer. The Reflection component
extracts the tests cases [24].

Figure 3 depicts the distribution component being used to
intermediate the execution of test suites over a parallel
infrastructure. To work with a given IDE and parallel infrastructure
the framework must be extended to include specific plugins. The
connection component provides an interface on the client side to
communicate with the cloud provider. In the cloud site this
component provides a service that manages the execution of each
test and it sends the test results back to the client in real-time. The
log component records events generated in the process. The main
component is a facade that encapsulates the components [24].

Figure 3: Distribution component being used to intermediate the execution of test

suites over a parallel infrastructure from [24].

6. Test Case Prioritization Techniques

With the limited testing budget, it has been always a big
challenge of software testing to optimize the order of test case
execution in a test suite, so that they detect maximum number of
errors. Three solutions to this problem were discussed in [28] such
as test suite reduction, test case selection, and test case
prioritization.

Cloud Testing

Main

Connection Log

Distribution

Reflection

Configuration

Test the Software

Testing Phase

Find the Bugs

Traceability Phase

Tracing Bug Location

Fixing the Bugs

Exploratory Testing

Storing in
Database

Generating
Reports

Figure 1: Architecture of BCO based fault coverage regression test.

http://www.astesj.com/

M. Hossain et al / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 252-256 (2018)

www.astesj.com 255

As the name suggests, the test suite reduction removes test
cases from a test suite, which are redundant, and test case selection
selects the most fault revealing tests based on a given heuristic. On
the other hand, Test Case Prioritization (TCP) considers all the test
cases without removing any of them. Instead it ranks all existing test
cases thus prioritizes the test cases. While testing is performed
testers executes the test cases with the higher priorities first as
long as the testing budged supports [25]. Following techniques are
discussed in [25, 28] to implement TCP.

6.1. Code/Topic Coverage Based

Most popular technique that has been reported in the literature
is the Code coverage-based TCP that prioritize the test cases
effectively [29]. It requires knowing the source code information
of the software to measure the code coverage. This technique is not
applicable in black- box systems tests because of lack of
information about the code coverage. In [30] Thomas et. al
proposed a modified a TCP technique, which they called topic
coverage, provides an alternative concept to code coverage. The
goal was to rank tests so that they cover more topics sooner [25,
28].

6.2. Text Diversity Based

Another common technique for TCP is to diversify the test
cases. In [25] authors described a test case diversifying techniques
that analyzes the test scripts directly hence this approach is called
a text diversity-based TCP. The technique treats test cases as
single, continuous strings of words. Then it applies different string
distance metrics, such as the Hamming distance, on pairs of test
cases and determines their dissimilarity. The idea is that the more two
test cases are dissimilar textually the more they are likely to detect faults in
different part of the source code [25, 28].

6.3. Risk Based Clustering

This TCP needs to access to execution results of the previous
test cases, typically examining only the last execution of the test
cases. It can be extended to as many previous executions as
possible. This technique must ensure to run those test cases that
failed in their previous execution provided that they are still
relevant [31]. The technique might be combined with other TCP
techniques, as well. For example, one can prioritize the previously
failed test cases using a coverage-based approach to provide a full
ordering of the test cases. In [28] authors modified this approach
to have several clusters of test cases of different riskiness factor
rather than having only two clusters of failed and non-failed test
cases. In their approach, the highest risk is assigned to the tests
that failed in the immediate version before the current version.
The next riskiest cluster are tests that did not fail in the previous
version but failed in the two versions before the current version,
and so on.

7. Proposed Frameworks Discussed

As we discussed earlier, Swarm Intelligence algorithms as an
emerging technique in the field of optimization are being
integrated in many of the automation testing frameworks. These
algorithms were instrumental in improving the performance and
the efficiency of software testing on the cloud. In this section,

we briefly highlight few of the frameworks that used Swarm
Intelligence algorithms:

In [23] A. Kaur and S. Goyal proposed a Bee Colony
Optimization algorithm for fault coverage-based regression test
suite prioritization. The framework imitates the behavior of two
types of worker bees found in nature. The behavior of the bees
has been observed and mapped to prioritize software test suite.

A similar system has been presented by Karnavel and
Santhoshkumar in [11] that used Bee Colony Optimization
algorithm for test suite prioritization. The authors modified an
existing framework to reduce the number of test cases from the
retest test pool.

G. Oliveira and A. Duarte presented one of the aerialist
frameworks called ‘CloudTesting’. The framework executed test
cases in parallel over a distributed cloud infrastructure [24]. In
the framework, cloud infrastructure is used as the runtime
environment for automated software testing. Their experimental
results indicate remarkable performance gain without
significantly increasing the cost involved in facilitating the cloud
infrastructure. The framework also simplified the execution of
automatic tests in distributed system.

The framework presented by S. Faeghe and S. Emadi in [32]
used the Ant Colony algorithm to automate software path test
generation. The authors proposed a solution based on ant colony
optimization algorithm and model-based testing for faster
generation of test paths with maximum coverage and minimum
time and cost. According to authors’ evaluation, the framework
showed better performance over the existing methods in terms of
cost, coverage and time.

A. Kaur and D. Bhatt in [29] proposed a regression testing
based on Hybrid Particle Swarm Optimization (HPSO). The
HPSO is an algorithm where a Genetic Algorithm (GA) is being
introduced to the Particle Swarm Optimization (PSO) concept.
The authors used the hybrid approach to prioritize tests for
regression testing. The authors also mentioned that use of
algorithm improved the effectiveness of their proposed
framework.

8. Conclusion

Testing is one of the most complex and time-consuming
activities. Automated testing on the cloud is one of the most
popular solutions to reduce the time and the cost of software
testing. In this paper, we discussed examples of automated
frameworks proposed for testing software on the cloud [11, 23,
24, 29, 32]. Based on our review to such frameworks, it is evident
that the use of the cloud as runtime environment for software
testing are more efficient and effective solution when compared
to traditional methods. Furthermore, on the cloud automated
testing frameworks that used Swarm Intelligence Algorithms such
ACA and BCO were able to produce significant reduction in the
time required to execute large test sets and cover a diverse and
heterogenic testing coverage. The use of such effective algorithms
facilitates and enhances parallel execution and distribution of
large testing loads on the cloud. In addition, cloud-testing
frameworks generally simplifies the execution of automatic tests

http://www.astesj.com/

M. Hossain et al / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 252-256 (2018)

www.astesj.com 256

in distributed environments, hence gains in performance,
reliability and simplicity of configuration.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

Authors would like to thank the reviewers of this work for their
help. This work was accomplished by the support of University of
Minnesota Crookston.

 References

[1] R. Hower, “What are some recent major computer system failures caused by
software bugs,” http://www. softwareqatest. com/qatfaq1.html,[February
2015], 2005.

[2] P. Ladkin, “The crash of flight ci676.” [Online].
Available:http://www.rvs.uni-
bielefeld.de/publications/Reports/taipei/taipei.html

[3] P. Krömer, J. Platoš, V. Snášel, “Nature-inspired meta-heuristics on modern
GPUs: state of the art and brief survey of selected algorithms.” International
Journal of Parallel Programming 42.5 (2014): 681-709.

[4] B. Beizer, Software testing techniques. Dreamtech Press, 2003.
[5] M. Mavrovouniotis, C. Li, S. Yang, “A survey of swarm intelligence for

dynamic optimization: algorithms and applications”, Swarm and
Evolutionary Computation 33 (2017): 1-17.

[6] N. Gupta, “Different approaches to white box testing to find
bug” International Journal of Advanced Research in Computer Sciency and
Technology (IJARCST 2014) 2.3 (2014): 46-9.

[7] M. Nouman, U. Pervez, O. Hasan, K. Saghar, “Software testing: A survey and
tutorial on white and black-box testing of c/c++ programs,” in Region 10
Symposium (TENSYMP), 2016 IEEE. IEEE, 2016, pp. 225–230.

[8] B. Balamurugan, J. Sridhar, D. Dhamodaran, P. Venkata Krishna. "Bio-
inspired algorithms for cloud computing: a review." International Journal of
Innovative Computing and Applications 6, no. 3-4 (2015): 181-202.

[9] R. Khalid, “Towards an automated tool for software testing and analysis”
In Applied Sciences and Technology (IBCAST), 2017 14th International
Bhurban Conference on, pp. 461-465. IEEE, 2017.

[10] E. Pacini, C. Mateos, C.G. Garino. "Distributed job scheduling based on
Swarm Intelligence: A survey." Computers & Electrical Engineering 40.1
(2014): 252-269.

[11] K. Karnavel1, J. Santhoshkumar, “Automated Software Testing for
Application Maintenance by using Bee Colony Optimization algorithms
(BCO)”, Information Communication and Embedded Systems (ICICES),
2013 International Conference on. IEEE, 2013.

[12] U. Salima and A. Askarunisha, “Enhancing the Efficiency of Regression
Testing Through Intelligent Agents” International Conference on
Computational Intelligence and Multimedia Applications 2007, pp. 103-108.

[13] S. Dick, A. Kandel. Computational intelligence in software quality assurance.
Vol. 63. World Scientific, 2005.

[14] M. E. Khan, F. Khan. "A comparative study of white box, black box and grey
box testing techniques." Int. J. Adv. Comput. Sci. Appl 3.6 (2012).

[15] M. Khan, “Different Approaches to Black Box Testing Technique for Finding
Errors,” IJSEA, Vol. 2, No. 4, pp 31-40, October 2011

[16] K. Dervis, B. Akay. "A survey: algorithms simulating bee swarm
intelligence." Artificial intelligence review 31.1-4 (2009): 61.

[17] A. Kaur, D. Bhatt “Hybrid Particle Swarm Optimization for Regression
Testing”, International Journal on Computer Science and Engineering, Vol. 3
No. 5 (May-11), pp1815~1824, ISSN: 0975-3397

[18] A. Colorni, M. Dorigo, V. Maniezzo. “Distributed Optimization by Ant
Colonies”. First European Conference on Artificial Life, 134-142, 1991.

[19] S. Mazzeo, and I. Loiseau. "An ant colony algorithm for the capacitated
vehicle routing." Electronic Notes in Discrete Mathematics 18 (2004): 181-
186.

[20] H. Li, P.L. Chiou, "Software Test Data Generation using Ant Colony
Optimization." International conference on computational intelligence. 2004.

[21] D. Teodorovic, M. Dell’Orco. "Bee colony optimization–a cooperative
learning approach to complex transportation problems." Advanced OR and AI
methods in transportation (2005): 51-60.

[22] O. Gotel, and A. finkelstein “An analysis of the Requirements Traceability
Problem”, International conference on Requirements Engineering, USA,
1994

[23] A. Kaur and S. Goyal, “A Bee Colony Optimization Algorithm for Fault
Coverage Based Regression Test Suite Prioritization”, International Journal
of Advanced Science and Technology Vol. 29, April, 2011

[24] G. Oliveira, A. Duarte “A Framework for Automated Software Testing on the
Cloud”, 2013 International Conference on Parallel and Distributed
Computing, Applications and Technologies

[25] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test cases
with string distances,” Automated Software Engineering, vol. 19, no. 1, pp.
65–95, 2011.

[26] A. Duarte, W. Cirne, F. Brasileiro andP. Machado, “Gridunit: software
testing on the grid.” In Proceedings of the 28th international conference on
Software engineering (pp. 779-782). ACM, May 2006

[27] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa, M. Sato. “D-
cloud: Design of a software testing environment for reliable distributed
systems using cloud computing technology.” In Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.
631-636. IEEE, 2010.

[28] H. Hemmat, Z. Fang, M. V. Mantyla , “Prioritizing Manual Test Cases in
Traditional and Rapid Release Environments”, Software Testing, Verification
and Validation (ICST), 2015 IEEE 8th International Conference on. IEEE,
2015.

[29] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases
for regression testing,” Software Engineering, IEEE Transactions on, vol. 27,
no. 10, pp. 929–948, 2001.

[30] S. Thomas, H. Hemmati, A. Hassan, and D. Blostein, “Static test case
prioritization using topic models,” Empirical Software Engineering, vol. 19,
no. 1, pp. 182–212, 2014

[31] A. Onoma, W. Tsai, M. Poonawala, H. Suganuma, “Regression testing in an
industrial environment,” Communications of the ACM, vol. 41, no. 5, pp. 81–
86, 1998.

[32] S. Faeghe, S. Emadi. “Automated generation of software testing path based
on ant colony.” In Technology, Communication and Knowledge (ICTCK),
2015 International Congress on, pp. 435-440. IEEE, 2015.

http://www.astesj.com/

	2. Testing
	2.1. Manual Testing
	2.2. Automated Testing

	3. Terminologies and Abbreviations
	3.1. Regression Testing
	3.2. Traceability
	3.3. White-Box Testing (WBT)
	3.4. Black-Box Testing (BBT)

	4. Swarm Intelligence Algorithms to Optimize Regression Testing.
	4.1. Ant Colony Algorithm (ACA)
	4.2. Bee Colony Optimization (BCO)

	5. Cloud Testing Framework Example
	6. Test Case Prioritization Techniques
	6.1. Code/Topic Coverage Based
	6.2. Text Diversity Based
	6.3. Risk Based Clustering

	7. Proposed Frameworks Discussed
	8. Conclusion
	Conflict of Interest

